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Anharmonicity of L a t t i c e  V i b r a t i o n s  in  Zinc by Elastic Neutron S c a t t e r i n g  
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The form of the effective anharmonic one-particle potential up to quartic terms is given and the expression 
of the temperature factor is derived for atoms occupying the sites of the point-group symmetry 6m2. The 
theory is applied to the analysis of the elastic thermal-neutron scattering data from a single crystal of Zn 
measured at 295 K and corrected for extinction and inelastic scattering contamination. The data show 
significant quartic terms. The values obtained for the anharmonic potential parameters correspond to the 
mean-square amplitudes (u 2) =0-0114 (3) A 2 and (u 2) =0.0257 (5) A 2 of the atomic vibrations in the 
principal directions. The present results are compared with other recent determinations. The discrepancy 
of the experimental values with theoretical calculations can be accounted for in full by constant-volume 
anharmonic effects. 

1. Introduction 

Rigorous lattice-dynamical calculation of anharmonic 
contributions to the measured intensities of the elastic- 
scattering pattern of X-rays and neutrons is extremely 
complex, and has been carried out thoroughly for only 
a few very simple crystal structures (see, for example, 
Maradudin & Flinn, 1963). An alternative approach is 
the treatment of the crystal as an Einstein solid (a 
system of independent anharmonic oscillators), where- 
by the real crystal potential is replaced by an effective 
one-particle potential. In spite of its simplicity, the 
model reproduces the main results of the rigorous 
lattice-dynamical treatment. A comprehensive review 
of the theory and the expression for the temperature 
factor of an atom in a cubic crystalline field have been 
presented by Willis (1969). A number of recent X-ray 
and neutron diffraction experiments on various cubic 
compounds have demonstrated conclusively the need 
to consider anharmonic effects in interpreting elastic- 
scattering data (for references, see Cooper & Rouse, 
1973; Willis & Pryor, 1975; Prager & Harvey, 1975). 

In the present study the extension of the isolated- 
atom formalism is made to the hexagonal close- 
packed structure which has been the object of growing 
interest in the past decade. The expression for the 
anharmonic temperature factor is derived and applied 
to analysis of the elastic neutron-scattering data of zinc 
in which significant anharmonicity is indicated by the 
existence of the finite third-order elastic constants 
(Schwartz & Elbaum, 1970) and by elastic X-ray- 
scattering results (Skelton & Katz, 1968). 

2. Theory 

In the approximation of an anharmonic Einstein solid, 
the vibration of each atom in the crystal is assumed 
to be governed by an effective one-particle potential, 
V(u), representing the potential experienced by the 

atom under small displacements, u, when all the 
neighbouring atoms are kept fixed. The form of the 
anharmonic potential V(u) is determined by the site 
symmetry of the atom concerned. A convenient ex- 
pression is obtained by expanding the potential in a 
power series as a function of the Cartesian coordinates 
Ux,U2,U3 of the displacement u from the equilibrium 
lattice sites. Having regard to the site symmetry of the 
atoms (6m2; u2 parallel to the 2-axis or perpendicular 
to m, and u3 parallel to 6) in the hexagonal close- 
packed structure, V(u) will take the form 

V ( u ) =  V 0 -+- u 2 ( ~ 2 0 K 2 0  -+-floo)-+-u30~33K33 

+u4(o~40K40 + fl20K20 + Yoo), (1) 

where terms up to fourth order have been retained. 
Here Vo, ei,,/3i~, and yij are constants of the potential, 
u 2 = u 2 + u~2+ u 2, and K~j are the symmetry-adapted 
harmonics given by 

u2K2o=~3u~--u 2) 

u3K33=u3-3Ul u2 (2) 

u4K4o=~(35u~ - 30u~u 2 + 3u 4) 

with the normalization max {Ki;} = 1. 
The quadratic term in the potential (1) is appropriate 

to a harmonic crystal with vibrational anisotropy, 
while the cubic and quartic terms represent anharmonic 
modifications to V(u). 

The temperature factor T(Q) for an atom in an 
Einstein solid can be evaluated in the classical or high- 
temperature limit from (Willis, 1969) 

oo 

fffexp[-V(u)/kBr]exp(iQ.u)duldu2du3 
T(Q)  = - ~ oo 

fffexpr-V,u,/k.r?du au d   
--00 

(3) 

AC 33A-1 



352 ANHARMONICITY OF LATTICE VIBRATIONS IN ZINC 

representing the ensemble average of exp (iQ. u), Q 
being the scattering vector. By assuming that the 
anharmonic terms in (1) are small compared with 
kBT, one can approximate exp [ -  V(u)/kBr] in (3) by 
the expansion 

exp [ -  V(u)/kaT]=exp ( -  Vo/kaT) 

t - : rA  u l - ¢ , q  u 2 - 7 o  u 3 ) { 1 -  k---~ u3K33 x exp~ 1--2 2 1~2 2 l n 2  2x ~33 

1 u4(0~4oK4o + f l z o K 2 o  + ` / o o ) t  (4) 
kBT .i 

where the notations AZ=(2floo-O~2o)/kB T and B 2= 
2(floo+O~2o)/kaT have been adopted. The integrals 
obtained by substitution of the expansion (4) into the 
expression (3) for the temperature factor can be con- 
veniently evaluated by applying the result" 

f ~ ooH"(ax) exp (-½a2x2) exp (2rcihx)dx 

( =i" ]/(2~) H, exp (5) a " ~ J  

for the Fourier transform of Hermite orthogonal func- 
tions H,(x) exp (-½a2x2). Thus the temperature factor 
for an atom in a potential field defined by (1) and (2) 
can be expressed as 

T(Q)= N -1 exp E-~(s 2 + s 2 + s2)] 

(X33 ($3_3S1S 2) x 1 + i ~  

(30%0 --4fl20 + 8`/00) 
8kBTA 4 

x(s~ + s~-8sZ-8s22 + 2s2s 2 +8) 

__ (0~40 + f120 + `/00) (s~_6s 2 + 3) 
ksTB 4 

_ (6a,o - f12o -4'/o0) (1 - s~)(s~ + s 2 - 2)'~ 
2k B TA 2 B 2 .1 

where 

(6) 

3e4o (A- ,  + B - 4 _  2A- ~,B- 2) N = I -  k- ~ 

f12o ( _ 4 A - 4 + 3 B - , + A - 2 B - 2 )  
kaT 
`/oo (8A-, ,+3B-4+4A-2B-E).  (7) 
kBT 

The quantities sl, s2, s3 are related to the Miller indices 
h, k, I of the reflexion by 

2rc(2h + k) 
S 1 -- Aal]//3 

2rck 
s 2 -  Aa2 (8) 

2rcl 
s3 - Ba3 

where al, a2(=al), and a3 are the conventional cell 
dimensions of the hexagonal unit cell. 

The factor exp [-½(s 2 + s  2 +s2)] in (6) represents 
the harmonic anisotropic temperature factor, and it is 
readily found that the conventional temperature- 
factor coefficients flij are related to the constants a2o 
and fl00 of the potential by 

4rc2kBT 
f l l l  ~---- fl22 ~-- 3aZ(floo __½0~20 ) 

(9) 
xEkB T 

&~ = a~(Go + ~o)" 

Anharmonic perturbation introduced in (1) manifests 
itself in expression (6) for the temperature factor 
through the terms in curly brackets which modify the 
harmonic contribution in reciprocal space. 

3. M e a s u r e m e n t s  

Integrated intensities of Bragg reflexions from the 
zinc single crystal were measured at room temperature 
using a Hilger-Ferranti four-circle diffractometer at 
the Danish Atomic Energy Commission Research 
Establishment, Riso. The 002 reflexion from a Be 
monochromator  crystal provided an incident neutron 
beam of wavelength 1.070 A. Measurements were 
made with the o)-20 step-scanning technique with step 
length 0.08 ° in 20. The F W H M  of the reflexions was 
found to be 0-5 and 1.2 ° near the focusing position (at 
35 ° in 20) and at 20= 80 °, respectively. The total scan 
width w was determined by w = 2"5 ° tan 0 + 6-28 °. The 
single crystal used was a rectangle of dimensions 2.4 x 
3.2 x 4.4 mm shaped by arc-cutting from a crystal 
grown at the Helsinki University of Technology. 

The measured integrated intensities were corrected 
for the long-term systematic decrease observed in the 
standard reflexions (less than 2% over the data collec- 
tion period of about four weeks). Correction for 
absorption was made by the Gaussian integration 
method (Coppens, Leiserowitz & Rabinovich, 1965) 
with the neutron absorption coefficient p--0-039 cm-  1 
Thermal inelastic-scattering contamination was sub- 
tracted from the measured intensities by applying the 
anisotropic one-phonon approximation giving proper 
consideration to the measuring geometry (for details 
see Merisalo & Kurittu, 1976). 

550 reflexions with sin 0/2_< 0"78 •-  i were measured, 
of which 34 were unrelated by symmetry. The internal 
agreement of the symmetry-related reflexions was 
good, except for 100 and 110 which were then omitted 
from the final refinement. 

4. D a t a  analys i s  

(a) Harmonic model 
The analysis was initiated by fitting the data by the 

method of least squares to a harmonic model. Zinc 
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conforms to the space group P63/mmc with one atom 
per asymmetric unit in the special position 2(c). This 
gives the constraints /31a=/~z2=2/312~a/333, /313= 
/323=0 for the thermal parameters. Thus, the least- 
squares refinement involved four variables: the scale 
factor, the isotropic extinction parameter (Coppens & 
Hamilton, 1970) and the two thermal parameters/311 
and/333. The value 0.57 x 10-12 cm (Bacon, 1972) for 
the scattering length was adopted, and the values al = 
a2 = 2-664 A and a3 = 4-945 A were assigned to the cell 
dimensions. 

The refinement converged to a value of 1.45% for 
the crystallographic R value, defined as R=EllFol -  
[Fc, h]l/~lFo[, w h e r e  Fo and Fc, h a r e  the observed and 
calculated structure factors respectively. Extinction 
corrections were found to be reasonably small for the 
size of the crystal, which adds to the credibility of the 
extinction model. Attempts to use an anisotropic 
model for extinction failed to give any better refine- 
ment, but indicated that the mosaicity was quite 
isotropic. 

The values of Fo and F~, h, along with standard devia- 
tions a, extinction coefficients y, and relative contribu- 
tions ~ from thermal inelastic scattering (y and ~ apply 
to Fo2), are listed in Table 1, columns 2-6. The corre- 
sponding values of the mean-square amplitudes 
( u Z ) = ( u  2) and @2) in directions parallel and per- 
pendicular to the hexagonal axis were 0.0107 (2) and 
0.0273 (3)/~k 2 respectively. 

(b) Anharmonic model 
The observed structure factors, scaled and corrected 

for extinction by the least-squares fitting to the 
harmonic model [as discussed in § 4(a)], were taken as 
the data for the analysis of anharmonic effects. Thus 
it was assumed that the scale and extinction param- 
eters are not correlated with either harmonic or an- 
harmonic thermal parameters. This assumption was 
found to be valid, within experimental errors, by 
initial refinements. 

The potential parameters were determined by 
minimizing the function MF given by 

MF = y'  [Fo[ - IFc,,,h] 2 W, 

where W= 1/o -2, Fc, ah = F(0)T(Q), F(0) referring to the 
calculated structure factor with the atoms at rest, and 
T(Q) is defined by equations (6)-(8). Minimization of 
MF was effected by a computer program which was 
developed so as to avoid the need for analytic evalua- 
tion of partial derivatives. 

Because of strong correlation between the harmonic 
and anharmonic parameters, it was not possible to 
refine them simultaneously. In the final analyses, there- 
fore, the harmonic parameters ~2o and/3oo were fixed 
and two models were considered. For model 1 the 
harmonic parameters are those obtained in § 4(a), 
whereas model 2 includes the values determined from 
the theoretical calculation of Barron & Munn (1967). 
The values of the anharmonic parameters are there- 

h k l Fo 
0 0 2 1"059 
0 0 4 0"800 
0 0 6 0.501 
1 0 1 0-945 
1 0 2 0-505 
1 0 3 0"781 
1 0 4 0"381 
1 0 5 0"539 
1 0 6 0.246 
1 0 7 0.314 
1 1 2 0-936 
1 1 4 0-716 
1 1 6 0-451 
2 0 0 0"475 
2 0 1 0.813 
2 0 2 0.459 
2 0 3 0"697 
2 0 4 0.345 
2 0 5 0.484 
2 0 6 0-224 
2 1 0 0"419 
2 1 1 0-721 
2 1 2 0.400 
2 1 3 0.622 
2 1 4 0.304 
2 1 5 0.434 
2 2 0 0-684 
2 2 2 0"647 
3 0 0 0.750 
3 0 2 0-730 
3 0 4 0"563 
3 1 0 0"342 

Table 1. Neutron diffraction data for zinc 
/;'model 1 L"model 2 

a ~ y Fc, h I c ,  ah J c ,  ah 

0"005 0"005 0.762 1"044 1-047 1"048 
0"004 0"028 0"901 0"801 0"805 0"807 
0"003 0.077 0.962 0"515 0"502 0"503 
0"005 0"004 0"788 0-928 0"927 0"927 
0"003 0"009 0-934 0-502 0"503 0-503 
0"004 0"018 0"883 0-778 0"782 0-783 
0"002 0"034 0-970 0-385 0.387 0-388 
0"003 0"055 0-951 0"547 0"546 0"547 
0.001 0-082 0-989 0"248 0-243 0"243 
0.002 0.115 0.983 0.322 0-303 0.302 
0.005 0"018 0"859 0"926 0"926 0"926 
0-004 0-044 0"921 0-711 0.717 0-717 
0"002 0-095 0"967 0"457 0"454 0.452 
0"002 0"015 0-947 0"486 0.482 0"481 
0"004 0"017 0"880 0-823 0"818 0"817 
0.002 0.023 0"964 0.445 0.444 0.444 
0"003 0"033 0"925 0"690 0"694 0.694 
0.002 0"048 0-981 0"342 0"345 0"345 
0.002 0"070 0"963 0"485 0"490 0"489 
0-001 0"095 0"992 0"220 0"219 0"218 
0"002 0"029 0"968 0"431 0"424 0-424 
0-004 0.031 0"918 0.731 0.720 0.720 
0.002 0"037 0"976 0"395 0"392 0.392 
0"003 0"047 0"944 0"613 0-615 0"614 
0.002 0"075 0"985 0"303 0-307 0.307 
0"002 0" 101 0"968 0"430 0"439 0.437 
0-003 0-053 0"918 0"707 0-685 0"686 
0"003 0"072 0"935 0.647 0.637 0"638 
0.004 0"039 0"908 0-796 0"779 0"779 
0"004 0-046 0"918 0-729 0"722 0"722 
0"003 0"083 0"947 0-560 0"568 0-568 
0.002 0"066 0"980 0"340 0.328 0"329 
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fore appropriate only to the corresponding values of 
the harmonic parameters. 

Initial analyses also showed that the value of the 
cubic anharmonic parameter ~33 did not differ signi- 
ficantly from zero and it was subsequently fixed at 
~33 = 0 .  

The calculated structure factors are given in Table 1 
and the final parameter values in Table 2. For both 
models the refinement converged at an R value of 
1.189/o. 

5. Diseussion 

The value of the R factor ratio for the harmonic and 
anharmonic models is 1.23. A significance test [based 
on the significance tables of Hamilton (1965)] shows 
that the improvement resulting from inclusion of the 
quartic anharmonic parameters is indeed significant 
for both models at a level much less than 0"005. 

Correlation between the harmonic and anharmonic 
parameters is clearly seen by comparing the results 
given in Tables 1 and 2. The R values as well as the 
calculated structure factors, are practically identical 
for both models. The values of the anharmonic param- 
eters, on the other hand, show remarkable discrep- 
ancies. It is therefore concluded that a part of the an- 
harmonic contribution is included in the harmonic 
parameters of model 1 and thus model 2 constitutes a 
more appropriate model for a discussion of the in- 
trinsic anharmonic effects. 

Table 2. Final values of potential parameters for Zn 

Model 1 Model 2 
520 -0"766(10) -1"109(10) x 10 - 1 2  erg/~ -2 
floo 1-511 (10) 1"841 (10) x 10- x2 erg/~ -2 
0~33 0 0 X 10- 12 erg/~ -3 
C%o 2"77 (15) 1"33 (15) x 10-12 erg A -4 
flzo -1"32(15) 6"52(20) x 10-12 erg A -4 
~oo -0"04(10) -6"13(20) x 10-12 erg A -* 

These effects can be discussed conveniently by 
studying some integral parameters characterizing the 
thermal smearing function as a whole rather than the 
harmonic and anharmonic parameters themselves 
separately, for example, the mean-square amplitudes 
of the atomic vibrations in the principal directions. In 
the high-temperature limit these can be evaluated as 
an ensemble average by the Boltzmann distribution 
function such that 

f u exp [ -  V(u)/kBT] 
= , p = x , z .  

f exp [ -  V(u)/kBT] 

For model 2 this leads to the values (u 2) = 0.0114 (3) A 2 
and (u2)=0"0257 (5) A 2. The deviations of these 
results from the calculated values (u 2) = 0.0085 (5) A 2 
and @2)=0"0276 (15) A 2 (Barron & Munn, 1967) 
appropriate to the model represent the effects of 
intrinsic anharmonicity. Thus the present results 

indicate a considerable and significant increase (about 
35%) of the mean-square amplitude and a softening of 
the potential function in the basal plane, whereas the 
decrease of the mean-square amplitude along the 
hexagonal axis remains uncertain, within the experi- 
mental error. The present results are also in excellent 
agreement with the values (u])=0-0112 (3) A 2 and 
(Uz2)=0"0259 (10) A, 2 determined from single-crystal 
X-ray diffraction intensities by Skelton & K a t z  (1968) 
and support their suggestion that the discrepancy with 
the calculated values of Barron & Munn (1967) may 
be caused by constant-volume anharmonic effects. 

Table 3. Values of mean-square amplitudes (A 2) along the 
principal axes of zinc 

Reference (u~) (u: 2) 
Barron & Munn (1967) 0"0085 (5) 0.0276 (15) 
Skelton &Katz (1968) 0.0112 (3) 0.0259 (10) 
Present harmonic model 0"0107 (3) 0"0273 (5) 
Present anharmonic model 1 0"0113 (3) 0"0260 (5) 
Present anharmonic model 2 0"0114 (3) 0.0257 (5) 

For model 1 the values (u2)=0-0113 (2) A 2 and 
(Uz2) =0"0260 A 2 were obtained. These are consistent 
with those of model 2 and emphasize the fact that 
although anharmonic parameters can be evaluated 
from the present data only by fixing the harmonic 
parameters at appropriate values, the mean-square 
amplitudes are rather independent of the particular 
choice of parameters. The values of the mean-square 
amplitudes are summarized in Table 3. 
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